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Abstract

Supercavitating vehicles undergo high longitudinal forces as result of their high underwater velocity. The drag force

compresses axially the body and may cause its buckling. In addition, the unsteady characteristics of the system com-

posed of cavity and vehicle generate time-varying longitudinal loads that are sources of parametric resonances. Super-

cavitating vehicles are here modeled as thin axisymmetric shells acted upon by time-varying axial compressive forces. A

finite element model is developed to predict the shells behavior and to perform the buckling analysis. The longitudinal

forces are considered to vary periodically in time. Accordingly, the stability analysis is performed using Bolotin�s
method and Floquet theory. Stability maps for varying velocity of the vehicle, frequency and amplitude of the force

oscillations are obtained. Periodically placed circumferential stiffeners are proposed as means to enhance the stability of

the considered class of shells. The presented results indicate how the stiffening rings significantly extend the range of

stable operating conditions by reducing the regions of dynamic instability, and suggest that optimal stiffened designs

may be identified to achieve stability at given operating speeds and under periodic longitudinal forces.

� 2003 Published by Elsevier Ltd.
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1. Introduction

Underwater vehicles such as torpedoes and submarines are limited in maximum speed by the consider-

able drag produced by the flow friction on the hull skin. Speeds of 40 m/s are usually considered as a
maximum limit, and most practical systems are limited to less than half this value. While low speed is

advantageous for acoustic and hydrodynamic efficiency, the achievement of high speed for underwater

vehicles and projectiles cannot be obtained using conventional hydrodynamics. When a body moves

through water at sufficient speed, the fluid pressure drops locally below the level that sustains the liquid

phase, and a low-density gaseous cavity forms. Flows exhibiting cavities entirely enveloping the moving

body are called ‘‘supercavitating’’. In supercavitating flows, the liquid phase does not contact the moving
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body over most of its length, thus making the skin drag almost negligible. Several new and projected su-

percavitating underwater vehicles exploit supercavitation as a means to achieve extremely high submerged

speeds and low drag (Miller, 1995). The size of existing or notional supercavitating high-speed bodies

ranges from that of projectiles to heavyweight full-scale torpedoes (Ashley, 2001; Harkins, 2001). Although
extensive efforts have been devoted in the past to the analysis of the fluid dynamic characteristics of

supercavitating vehicles (Harkins, 2001; Savchenko, 2001), very little research has been dedicated so far to

the evaluation of the structural behavior of slender elastic bodies traveling underwater at high speed in

supercavitating regimes. Much of the previous and current studies on guidance, control and stability have

considered supercavitating vehicles as rigid bodies (Rand et al., 1997; Kirschner et al., 2002; Vasin, 2001),

or mostly have addressed the hydrodynamic characteristics of the water/cavity system (Savchenko, 2001;

Vasin, 2001).

In supercavitating underwater vehicles, the interaction between the water and the cavitator nose is
particularly important as the drag force increases approximately with the square of the vehicle�s speed and

thus can become very high (Vasin, 2001). The drag force compresses axially the body and may cause its

buckling. Buckling clearly corresponds to structural failure and therefore has been identified as one of the

limiting factors for the operating speed of supercavitating vehicles (Vasin, 2001). Buckling stability is a

major concern for the structural safety of supercavitating projectiles, which reach velocities of the order of

1500 m/s (Harkins, 2001). For cylindrical structures such as torpedoes, the value of the critical buckling

velocity may approach the limits currently pursued for supercavitating vehicles (Ashley, 2001). Buckling

stability hence needs to be addressed in order to assess the structural safety limits of supercavitating tor-
pedoes and should be considered in an effort to extend their operating range. In addition, the transient,

unsteady nature of the cavitation process and the resulting time-dependent properties of the cavity and of

its interactions with the vehicle require investigating the structural behavior of supercavitating vehicles

when acted upon time-varying forces. In particular, variations in the velocity of forward motion, oscilla-

tions and shape variations of the cavity, and the complex interaction of the propeller forces with the cavity

re-entrant jet cause the drag and the propeller force sustaining the vehicle�s motion to be time-dependent

(Kirschner et al., 2001; Kirschner and Imas, 2002; Semenenko, 2001a,b; Stinebring et al., 2001). The de-

termination and the analysis of these interactions and the characterization of their dynamic effect are
essential in defining the structural stability of supercavitating vehicles.

The goal of this paper is to investigate the dynamic buckling characteristics of supercavitating bodies,

modeled as elastic axisymmetric shells. The shells are acted upon by a system of axial forces which are

considered to vary periodically in time and are defined in terms of the speed of the vehicle, and period and

amplitude of the oscillations. The influence of these parameters on the shell�s dynamic stability is assessed

through a finite element (FE) model, formulated to predict mass and stiffness properties of the considered

class of shells. The FE formulation is used to express the equation of motion of the shell as a Mathieu/Hill

equation, whose stability can be studied using Floquet theory and/or Bolotin�s method (Bolotin, 1964). The
developed FE model also accounts for the effect of circumferential stiffening rings equally spaced along the

shell length, which are here applied and used as means for enhancing the shells� stability. Periodically placed
stiffening rings have been already proposed to reduce vibrations in supercavitating vehicles resulting from

their periodic impacts with the cavity water/interface (tail-slaps) (Ruzzene and Soranna, 2002). The study

presented in (Ruzzene and Soranna, 2002) were based on previous results on the dynamic response of

periodically stiffened shells (see for example Akl et al., 2002). The effectiveness of periodically located

stiffeners in enhancing the dynamic buckling stability of supercavitating bodies is here evaluated by con-

sidering different configurations and geometry for the rings. The encouraging performance for the con-
sidered configurations suggests that the location and the dimensions of the rings should be optimized in

order to achieve stability with minimum added weight. Furthermore, the results presented here and in

(Ruzzene and Soranna, 2002) indicate that the stiffening rings may be designed and optimized in order to

simultaneously achieve vibration reduction and enhanced buckling stability. The paper is organized in five
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sections. In the first section a brief introduction is given. Section 2 outlines the formulation for the axi-

symmetric shell model and presents the resulting equation of motion. Section 3 describes the considered

buckling forces and summarizes the principles of Floquet theory and Bolotin�s method for the analysis of

the shell�s stability. Section 4 presents numerical results obtained for various combinations of the buckling
forces and different shell configurations, while Section 5 summarizes the main results of the work and gives

recommendations for future research.
2. Finite element formulation

2.1. Overview

The FE model is formulated using the coordinate system and the degrees of freedom shown in Fig. 1.

The geometry of the structure is used to reduce the dimensions of the problem through a semi-analytical

procedure whereby variables are expanded as Fourier series in the circumferential angle h. The ortho-

gonality property of harmonic functions decouples the contributions of the components of the series and

allows a separate analysis for each circumferential harmonic (Leissa, 1973; Zienkiewicz, 1971; Cook et al.,
2002).
2.2. Strain–displacement relationships

The thin-shell approximation is here considered, so that through the thickness normal and shear strains

can be neglected (Leissa, 1973). The total strain state in the shell is expressed as a combination of linear and

non-linear components:
e ¼ eðlÞ þ eðnlÞ ð1Þ
where � ¼ f ex eh cxh g
T
is the vector describing the strain state in the shell.

The linear strains eðlÞ are related to the mid-surface displacement through Flugge shell equations (Leissa,
1973; Flugge, 1973; Yamaki, 1984):
Fig. 1. Degrees of freedom and coordinate system.
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eðlÞx ¼ ux � rwxx

eðlÞh ¼ vh
R
þ w
Rþ r

� r
R

whh

r þ R

cðlÞxh ¼ uh
Rþ r

þ Rþ r
R

vx � wxh
r
R

�
þ r
Rþ r

� ð2Þ
where the subscripts �x� and �h� denote partial differentiation, u ¼ uðx; hÞ, v ¼ vðx; hÞ, w ¼ wðx; hÞ are the

axial, tangential and radial displacement of the shell�s mid-surface, and R is the mid-surface radius (Fig. 1).

The non-linear strain components are expressed as (Yamaki, 1984):
eðnlÞx ¼ 1

2
½u2x þ v2x þ w2

x �

eðnlÞh ¼ 1

2R2
½u2h þ ðv� whÞ2 þ ðwþ vhÞ2�

cðnlÞxh ¼ 1

R
½uxuh þ vxðwþ vhÞ � wxðv� whÞ�

ð3Þ
2.3. Kinetic and strain energy

The shell strain energy is expressed as:
U ¼ U ðlÞ þ U ðnlÞ ð4Þ

where U ðlÞ and U ðnlÞ are strain energy terms corresponding respectively to the linear and non-linear strains.

The strain energy can be written as:
U ¼ 1

2

Z
V
eðlÞT � C � eðlÞ dV þ 1

2

Z
V
rT
0 � eðnlÞ dV ð5Þ
where V is the volume of the shell, C is the stiffness matrix for the shell material, and r0 is the stress vector

corresponding to the applied buckling loads.

The shell kinetic energy is:
T ¼ 1

2

Z
V
qð _uu2 þ _vv2 þ _ww2ÞdV ð6Þ
where q is the density of the shell�s material.
2.4. Degrees of freedom and shape functions

The axisymmetric geometry of the structure allows a semi-analytical formulation for the shell FE model

(Zienkiewicz, 1971). The generalized displacement field is expanded by Fourier Series in the circumferential

direction according to the following expression:
uðx; hÞ ¼
X
n

Rðn; hÞuðn; hÞ ð7Þ
with n denoting the nth circumferential harmonic and where:
u ¼ u v wf gT ð8Þ



M. Ruzzene / International Journal of Solids and Structures 41 (2004) 1039–1059 1043
and
Rðn; hÞ ¼
cos nh 0 0

0 sin nh 0

0 0 cos nh

2
4

3
5 ð9Þ
The displacement components associated with harmonic n are predicted by discretizing the shell with

one-dimensional elements bounded by two nodal points. Each node has 4 degrees of freedom to describe

axial, radial and circumferential displacements as well as the rotation about the circumferential axis. The

dynamic behavior of each element can be thus described in terms of the following nodal displacement

vector:
dðeÞn ¼ f uni vni wni wxni unf vnf wnf wxnf g
T ð10Þ
where i and f denote respectively the element initial and final node. The longitudinal and circumferential
displacements are assumed to vary linearly along the axial coordinate x, while cubic polynomials interpolate

the radial displacement. The following relations thus hold:
uðn; xÞ ¼ NðxÞdðeÞn ð11Þ

where NðxÞ is the matrix of the shape functions.

The linear strain component associated with the nth harmonic is expressed as:
eðlÞ ¼
X
n

Rðn; hÞBðn; r; xÞdðeÞn ð12Þ
where Bðn; r; xÞ is an interpolation matrix obtained by substituting Eqs. (11) and (12) into Eqs. (2) and (3).

Expressions for the interpolation matrix B can be found in (Akl et al., 2002).
2.5. Mass, stiffness and geometric matrices

The interpolation of displacements and strains are used to express the element strain and kinetic energy

in terms of the nodal displacement vector dðeÞn . After integration along the circumferential direction, the

linear strain energy can be written as:
U ðlÞ ¼ 1

2

X
n

U ðlÞ
n ¼ 1

2

X
n

dðeÞTn KðeÞ
n dðeÞn ð13Þ
where KðeÞ
n is the element stiffness matrix for the nth harmonic:
KðeÞ
n ¼ p

Z LðeÞ

0

Z h=2

�h=2
B

Tðn; r; xÞ � C � Bðn; r; xÞRdrdx ð14Þ
In Eq. (14), LðeÞ and h denote respectively the element�s length and radial thickness.

Similarly, the element kinetic energy can be rewritten as:
T ¼ 1

2

X
n

Tn ¼
1

2

X
n

_dd
ðeÞT
n MðeÞ _dd

ðeÞ
n ð15Þ
where MðeÞ is the element mass matrix, which is given by:
MðeÞ ¼ pqhR
Z LðeÞ

0

NTðxÞ �NðxÞdx ð16Þ



Fig. 2. Buckling of supercavitating vehicles (a) and considered simplified configuration (b).
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This study considers axisymmetric axial buckling loads applied according to the configuration shown in

Fig. 2. This loading condition is relevant to supercavitating vehicles, as described in the following section

(Section 3). Accordingly, the non-linear component of the strain energy can be expressed as:
U ðnlÞ
n ¼ 1

2

X
n

Z
V
ET
n � R0 � En dV ð17Þ
where the vector En is defined as:
En ¼ ux 1=R � u# vx 1=R � v# wx 1=R � ðw# � vÞf gTn ð18Þ
The vector En is expressed in terms of the nodal degrees of freedom as follows:
EðnlÞ
n ¼ bðn; r; xÞdðeÞn ð19Þ
where b is an interpolation matrix obtained by imposing the shape functions introduced in Eq. (11).

In Eq. (17), matrix R0 contains the components of the buckling stress vector r0 ¼ f r0x r0# s0x# g
T
and

it is given by (Cook et al., 2002):
R0 ¼ diagðr̂r0Þ ð20Þ
with
r̂r0 ¼
r0x s0x#
s0x# r0#

� �
ð21Þ
Hence, the element geometric stiffness matrix for axisymmetric buckling loads can be expressed as:
KgðeÞn ¼ p
Z LðeÞ

0

Z h=2

�h=2
bðn; r; xÞT � RðeÞ

0 � bðn; r; xÞRdrdx ð22Þ
The buckling stresses in each shell element are determined through a separate static axisymmetric (n ¼ 0)
analysis performed on the considered structure, which gives:
rðeÞ
0 ¼ C � Bð0; r; xÞdðeÞ0 ð23Þ
where dðeÞ0 is the element nodal displacement vector associated to the n ¼ 0 harmonic and corresponding to

the applied axisymmetric buckling loads. This formulation for the geometric stiffness matrix is quite gen-

eral, as it includes the possible effects of loads applied along the axial, radial and circumferential directions.

It can be therefore applied to analyze buckling in shells loaded by uniform axial compression, internal or
external pressures and/or twisting moments.
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The orthogonality properties of the harmonic functions used in the Fourier Series expansion decouple

the strain energy of each harmonic component, allow defining a stiffness and geometric matrices for each n,
and permit a separate analysis for each harmonic. The displacements and strains resulting from each

separate analysis can be recombined through Eqs. (7) and (12) to obtain a complete description of the shell
motion and strain state.
2.6. Equation of motion

The shell�s equation of motion for a given harmonic n can be obtained by invoking Hamilton�s principle,
which gives:
Table

Shell m

E (N

q (k

D (m

h (m

L (m
Mn
€ddn þ ðKn þ KgnÞdn ¼ 0 ð24Þ
where Mn, Kn and Kgn are the global FE matrices obtained from the assembly of the element matrices

defined in Eqs. (14), (16) and (22), while d denotes the vector of the global nodal degrees of freedom.
2.7. Validation of finite element formulation

The buckling behavior of plain thin shells under compressive forces is described for example in (Flugge,

1973; Yamaki, 1984; Nagai and Yamaki, 1978). Analytical solutions for shells axially unconstrained and

with both ends supported in the tangential and radial directions are given in (Flugge, 1973; Yamaki, 1984).

The results from the analytical model are compared with the predictions from a 64 element FE model,
formulated according to the procedure described above. Dimensions and material properties considered for

the shell are listed in Table 1.

In the FE formulation, the buckling loads are obtained from the solution of the following eigenvalue

problem:
jKn þ Kgnj ¼ 0 ð25Þ
The comparison between the critical loads predicted analytically and through the FE model is presented in

Fig. 3, which shows the static buckling loads for values of n varying between 0 and 3. For a given n, each
load is identified by the number of half waves along the longitudinal direction, here denoted as m, in the

corresponding buckling mode. The plots in Fig. 3 indicate the excellent agreement between the two sets of

predictions, thus suggesting the accuracy of the developed FE code.

The results demonstrate the complex characteristics of buckling of cylindrical shells, where, as opposed

to beams, critical loads do not increase monotonically with the number of half waves m (Flugge, 1973). This

behavior is also responsible for the dynamic stability maps to become quite intricate. For the considered
configuration, the curves corresponding to n ¼ 3 and n ¼ 2 show a minimum for increasing values of m,
respectively at m ¼ 5 and m ¼ 2. In here, the mode n ¼ m ¼ 2 is the one occurring for the lowest value

of the axial load. The corresponding buckling mode is shown in Fig. 4.
1

aterial properties and geometry
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Fig. 3. Static buckling loads: comparison of analytical and FE predictions.

(2,2)

Fig. 4. Buckling mode corresponding to lowest critical load.
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3. Buckling forces and techniques for stability analysis

Underwater supercavitating vehicles can be as a first approximation considered as slender elastic bodies,

and their structural behavior can be modeled using the shell formulation presented in the previous section.
The nature of the forces acting on supercavitating vehicles is very complex and still under extensive ex-

perimental and numerical investigations. The results presented herein are intended to provide design

guidelines which will help estimating the stability limits for the considered class of vehicles. In addition, the

results can be also valuable for the design of other structures whose behavior can be described by a

cylindrical shell approximation.
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3.1. Overview: buckling forces in supercavitating vehicles

According to the configuration depicted in Fig. 2(a), the vehicle interacts with the liquid phase through

its front surface (nose or cavitator), past which the cavity is formed. The drag force experienced by the
vehicle during its forward motion is given by (Vasin, 2001; Kirschner et al., 2001):
FD ¼ 1

2
qwAcCDðr; 0ÞV 2 ð26Þ
where qw is the density of the fluid (water), Ac is the cross section area of the cavitator, and V is the velocity
of forward motion of the body. Also in Eq. (26), CDðr; 0Þ is the cavitator drag coefficient at zero angle of

attack, as defined in (Kirschner et al., 2002; Semenenko, 2001b) and r is the cavitation number, which is

given by:
r ¼ p1 � pc
1=2qwV 2

ð27Þ
where p1, pc denote respectively the ambient and cavity pressures. The supercavitation flow regimes,

whereby the vehicle�s body is completely enveloped by a gaseous cavity, corresponds to small cavitation
numbers (r < 0:1). Such values can be achieved naturally for velocities of forward motion V > 50 m/s. In

such conditions, the cavity pressure pc decreases to oscillate about a value close to the saturated water

vapor pressure pv ¼ 2350 Pa (at 20 �C) (Semenenko, 2001b). Hence, in this condition, the effects of the

corresponding external pressure load on the vehicle�s body can be easily neglected.

The unsteady nature of supercavitating flows and of the vehicle/cavity interactions require a complete

stability analysis for the considered class of vehicles to consider time-varying components for the applied

buckling loads. Associated to the natural supercavitating regimes here considered are cavity shape and

pressure oscillations which affect the magnitude of the applied axial loads. Primarily, the cavity oscillations
affect the drag coefficient which typically shows periodic impulsive-type increments with respect to the

steady state value introduced in Eq. (26). A description of this behavior can be found in (Kirschner et al.,

2001), where both experimental and numerical results are discussed. Moreover, the motion of supercavi-

tating vehicles is guided and controlled through a set of fins located close to the tail of the vehicle (see Fig.

2). The fins generate lift as well as drag forces which depend upon the vehicle�s motion and the hydro-

dynamic behavior of the cavity. The fins act as cavity-piercing hydrofoils, and experience unsteady drag

forces oscillating at frequencies approximately in the kHz range. Experimental evidence of such oscillations

can be found in (Stinebring et al., 2001). In addition, the propulsion force FP that sustains the vehicle
motion interacts with the cavity re-entrant jet. The nature and the characteristics of these interactions are

still under extensive investigations (see for example (Kirschner and Imas, 2002)), but initial studies have

highlighted the presence of significant oscillations, which cause the propulsion not to be constant in time.

Finally, even during horizontal flight, the vehicle undergoes periodic impacts (tail-slaps) with the cavity wall

or is subject to planing forces, which also have time-dependent axial components (Kirschner et al., 2002).

The combination of all these effects, in addition with the influence of the vehicle�s maneuvers and the as-

sociated interactions with the cavity, require the analysis of the vehicle�s stability to consider time-varying

forces. Since the behavior of axial forces on supercavitating vehicles is still being evaluated and fully
characterized, and due to the complexity of the considered system, simplified formulations for the applied

axial loads need to considered at this time. Both harmonic-type as well as periodic pulse-type forces are used

for the analysis, with fundamental period varying over a range that covers a wide spectrum of operating

conditions.
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3.2. Considered time-variations for the axial force

The axial force pðtÞ is represented as the sum of a constant component and of a time varying term, which

accounts for the oscillations of the force with respect to its constant, steady flow value. The considered axial
force is expressed as:
pðtÞ ¼ p0 þ pdðtÞ
pðtÞ ¼ p0 þ pd0UðtÞ
pðtÞ ¼ p0ð1þ bUðtÞÞ

ð28Þ
In Eq. (28), p0 denotes the constant component of the distributed axial force, while pd0 and UðtÞ respectively
define amplitude and variation of the time-varying component. The magnitude pd0 is expressed in terms of

p0 through the ratio b ¼ pd0=p0. The constant component of the total axial force is taken equal to the drag

force expressed by Eq. (26), so that the total force per unit area p0 is given by:
p0 ¼
FD

2pRh
¼ qwAcCD

4pRh
V 2 ð29Þ
Eq. (29) relates the axial load to the velocity of forward motion of the vehicle V . The following expressions

for UðtÞ are considered:
UðtÞ ¼ cosXt ð30Þ

and
UðtÞ ¼ 1 0 < t < s
0 s < t < T

�
ð31Þ
where X ¼ 2p=T defines the frequency of the oscillations of the axial force. The considered expressions for

UðtÞ given in Eqs. (30) and (31) in general define a variety of periodic variations for the axial force. In

particular, the expression of UðtÞ given in Eq. (31) describes a force characterized by a sequence of rect-

angular pulses of duration s, which approximately reproduces measured oscillations and variations of the

drag coefficient at the nose (Stinebring et al., 2001). The performed dynamic buckling analysis evaluates the

effects on stability of frequency X, force ratio b and pulse duration s.
The equation of motion for the shell (Eq. (24)) can be conveniently rewritten as:
Mn
€ddn þ ðKn þ ð1þ bUðtÞÞ � KgnÞdn ¼ 0 ð32Þ
Eq. (32) is a system of N 2nd order ordinary differential equations, N being the number of degrees of

freedom used to discretize the shell structure. Eq. (32) has periodic coefficients as a result of the time-

varying axial force and can be characterized as a Mathieu/Hill equation (Bolotin, 1964). The FE formu-

lation in Eq. (32) is a general framework within which generally varying thickness profiles for the shell, as

well as the presence of circumferential stiffening rings can be easily accounted for.

Separate analyses are performed for each harmonic n to evaluate the conditions of instability for each

circumferential mode order, and to identify the order n where instability occurs for the lowest load values.

The evaluation of the buckling behavior for various values of n identifies limit operating conditions for the
considered class of supercavitating vehicles, and potentially predicts their failure modes.

3.3. Stability analysis using Bolotin’s method

The regions of instability for various combinations of the axial force parameters (vehicle�s speed V ,
frequency X, and ratio b) can be obtained by applying the method presented in (Bolotin, 1964). The force

variation defined in Eq. (28) describes a case of parametric excitation, which causes instability for particular
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relationships between the load frequency X and the structure�s natural frequencies, and for load amplitudes

which are significantly lower than those corresponding to static buckling. For sufficiently small load am-

plitudes, parametric resonance is achieved for frequencies X ¼ 2xm;n=k, where k is an integer (k ¼ 1; 2; . . .)
and where xm;n is the mth natural frequency at harmonic n. The parametric excitation conditions defined by
k ¼ 1, i.e. with X ¼ 2xm;n, are denoted as principal parametric resonances. According to Bolotin�s method, a

first approximation for the boundaries of the stability regions corresponding to the principal parametric

resonances are obtained by imposing in Eq. (32) periodic solutions of the kind:
dðtÞ ¼ A sin
Xt
2
þ B cos

Xt
2

ð33Þ
where A, B are arbitrary vectors. Substituting Eq. (33) in Eq. (32) and equating the coefficients of sinðXt
2
Þ,

cosðXt
2
Þ, yields a set of linear algebraic equation in terms of A, B. The condition for non-trivial solutions, i.e.

for an unstable response of the system, is given by:
Kn

���� þ 1

�
� 1

2
b

�
� Kgn �

X2

4
Mn

���� ¼ 0 ð34Þ
where the geometric matrix Kgn is calculated for assigned p0. Imposing b and solving Eq. (34) yields the

values of frequency X defining the boundaries between stable and unstable conditions. The solutions of the

eigenvalue problem in Eq. (34) obtained with the �)� and �+� sign define respectively the upper and lower
boundaries of the stability regions.

Imposing periodic solutions with X ¼ 2xm;n=k (k 6¼ 1) gives the stability boundaries corresponding to

other parametric resonance conditions. The formulation of the method for a generic value of k becomes

however quite cumbersome and computationally intensive.

3.4. Stability analysis using Floquet theory

In order to apply Floquet�s theory for stability analysis, Eq. (34) is recast in state space form:
_XX ðtÞ ¼ AðtÞX ðtÞ ð35Þ
where X ðtÞ ¼ f _ddðtÞ dðtÞ gT is the column vector of system states, and AðtÞ ¼ Aðt þ T Þ is a 2N � 2N pe-
riodic matrix. According to Floquet theory, the stability of linear systems defined by ODEs with periodic

coefficients can be assessed by evaluating the spectral radius of the system�s transition matrix H. The

transition matrix H relates all the states of the system at a given instant of time t, to the states at time t þ T :
X ðt þ T Þ ¼ HX ðtÞ ð36Þ
The spectral radius is defined as the absolute value of the highest eigenvalue of the transition matrix. The

response of the system described by Eq. (35) is stable if the spectral radius of the transition matrix is equal

to or lower than unity. The transition matrix for a system with generally varying periodic coefficients can be
obtained through the numerical evaluation of the response after one period T for the following set of initial

conditions:
Yð0Þ ¼ I ð37Þ
where I is the 2N � 2N identity matrix and YðtÞ is a 2N � 2N matrix containing the states of the system at

time t for the considered sets of initial conditions. Eq. (36) can be hence rewritten as:
YðT Þ ¼ HðT ÞYð0Þ ¼ HðT Þ ð38Þ
This approach applies to systems with generally varying coefficients and therefore is very general. The

assessment of the stability for a given combination of the system parameters (in this case frequency X,
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amplitude p0, and ratio b) requires 2N numerical integrations of the system�s equation of motion (Eq. (35)).

This often makes the evaluation of the stability regions through the application of Floquet�s theory a

numerically intensive task.

3.4.1. Evaluation of the transition matrix for a step-wise constant axial force

The transition matrix required for the stability analysis according to Floquet�s theory can be efficiently
evaluated for the axial force described by Eq. (31), which yields a step-wise constant system matrix AðtÞ in
Eq. (35). The response of the system at time s and T and can be found as:
X ðsÞ ¼ eA1sX ð0Þ 0 < t < s

X ðT Þ ¼ eA2ðT�sÞX ðsÞ s < t < T
ð39Þ
Imposing continuity of the states at time t ¼ s gives:
X ðT Þ ¼ eA2ðT�sÞeA1sX ð0Þ ¼ HðT ÞX ð0Þ ð40Þ
where
HðT Þ ¼ eA2ðT�sÞeA1s ð41Þ
is the transition matrix of the system. For the step-wise time-varying longitudinal force, the evaluation of

the transition matrix using Eq. (41) represents a simple alternative to numerical integration. For general

periodic variations of the axial forces other numerical techniques can be applied and are currently being
tested (Bauchau and Nikishkov, 2001; Hirsch and Smale, 1974).
4. Numerical results

4.1. Configuration for the stiffened shells

The dynamic stability of stiffened axisymmetric cylindrical shells is here investigated. The considered

stiffeners are circumferential and equally spaced along the shell length. They are modeled as shell elements

of higher thickness, according to the formulation described in Section 2. This simple representation for the

stiffeners allows a first assessment of their effectiveness in stabilizing the shell buckling behavior. The

buckling forces described in Section 3 are considered in order to perform a comprehensive evaluation of
Fig. 5. Schematic of considered stiffened configurations and main dimensions of the stiffeners.



Table 2

Stiffened configurations: number of rings and spacing

Number of rings Spacing (m)

0 (Plain) –

8 0.02

16 0.01

Table 3

First natural frequency versus harmonic n

n Frequency (Hz)

0 8662

1 137

2 353

3 482

Fig. 6. Principal instability regions for plain and stiffened shells (n ¼ 0).
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stability when the shell is acted upon by a variety of periodically time-varying longitudinal forces. The

analysis can be performed for varying periods of the force (T ¼ 2p=X), increasing amplitude of the static

component p0, various ratios b and pulse durations s. For each combination of these parameters, the

buckling characteristics of plain shells are compared to the those of stiffened shells of various configura-
tions. The dimensions and the material properties of the plain shell are those listed in Table 1. The stiffening

rings have an axial length Ls ¼ 5 cm, which is kept fixed throughout the analysis. The considered rings�
thickness varies between 0 (i.e. unstiffened, or plain configuration) and 0.005 m, corresponding to Ds ¼ 2D0.

The schematic representation of a stiffened shell is shown in Fig. 5, while Table 2 summarizes the considered

stiffened configurations.
4.2. Dynamic stability for harmonic axial force

The dynamic stability of plain and stiffened shells is first evaluated for an axial force described by Eq.

(30). The results presented in this section are limited to the principal parametric resonance, as predicted

using Bolotin�s method. For each harmonic order n, the analysis is carried out in a frequency range
Fig. 7. Principal instability regions for plain and stiffened shells (n ¼ 1).
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approximately centered at twice the frequency of the lowest radial mode (see Table 3). Results for b ¼ 0:1
are shown in Figs. 6–9, where the instability regions are represented by dark regions. The maximum value

of velocity (250 m/s) considered for the analysis is higher than the operating conditions currently envisioned

for supercavitating torpedoes (’100 m/s, (Ashley, 2001)), but may represent a limit for future refinements
of this concept.

Fig. 6 presents the stability characteristics for the axisymmetric mode (n ¼ 0). The first unstable region

begins approximately at 17 kHz at low speeds. This limit decreases as the vehicle�s velocity, i.e. the mag-

nitude of the applied axial load, increases. Adding the rings substantially modifies the extension as well as

the location of the unstable regions. In particular, both 8 and 16 rings reduce the extension of the unstable

regions in the considered frequency range. Such a reduction can be primarily explained by the stiffening

effect of the rings, which cause an increase in the natural frequencies and associated parametric instability

conditions. Such a shift is however limited as the stiffening effect of the rings is balanced by the associated
added mass. In addition and more importantly, equally spaced rings affect substantially the dynamic

buckling stability of the shell by reducing the extension of the unstable regions. Such a reduction produces

an extension of the stable regions above the first critical conditions, as evidently shown in the map for the
Fig. 8. Principal instability regions for plain and stiffened shells (n ¼ 2).



Fig. 9. Principal instability regions for plain and stiffened shells (n ¼ 3).
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shell with eight rings and Ds=D0 ¼ 2. The extension of these supercritical stable conditions is highly in-

fluenced by the number and geometry of the rings, which suggests that the stiffened configurations may

need to be optimized in order to achieve stability for assigned values of frequency and velocity. The maps
shown in Fig. 7 indicate that instability for n ¼ 1 occurs at significantly lower frequencies, as expected from

the value of the associated natural frequency (Table 3), and over very narrow regions. The stiffening rings

are again effective in enhancing the stability of the vehicle. They eliminate the third unstable region from the

considered frequency range, and overall reduce the extension of the two remaining regions. Similar con-

clusions can be drawn from the analysis of Figs. 8 and 9, which show results respectively for n ¼ 2 and

n ¼ 3.

4.3. Dynamic stability for step-wise periodic axial force

The performance of the considered stiffened configurations is also evaluated when the axial force has a

time varying component described by Eq. (31). The stability is evaluated for various combinations of the
longitudinal force parameters, which now also include the duration of the rectangular pulse s. Durations



Fig. 10. Unstable regions for periodic axial pulse: plain (a) and stiffened (b) shells (n ¼ 0).
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s ¼ 0:125T , and s ¼ 0:5T , are considered to evaluate the effect of the pulse duration on the extension of the

instability regions. Results for plain shells can be found in Figs. 10(a), 11(a), 12(a) and 13(a) which re-

spectively show the stability maps for n ¼ 0, 1, 2, and 3. The maps are obtained by plotting the spectral
radius of the transition matrix defined in Eq. (41). In order to improve the clarity of the plots, the logarithm

of the spectral radius is plotted, so that zero values identify stable combinations of frequency X and velocity

V . These zero values are estimated within a tolerance of 1e)5 in order to reduce the effects of numerical

inaccuracies in the evaluation of the transition matrix. Such tolerance value has been selected after an

extensive study aimed at reducing numerical errors, while maintaining the accuracy in the estimation of the

stable regions. Finally, a 2-color map was enforced in the plots to identify unstable regions by a single dark

color.

The results for n ¼ 0 shown in Fig. 10(a) indicate the presence of two major instability regions in the
considered frequency range. The additional region, centered at approximately 8600 Hz, corresponds to the



Fig. 11. Unstable regions for periodic axial pulse: plain (a) and stiffened (b) shells (n ¼ 1).
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second parametric resonant condition, which occurs for frequencies X ¼ 2xi=k, (k 6¼ 1). As opposed to

Bolotin�s method, Floquet theory predicts all instabilities in the considered frequency range, without the

capability of discriminating between primary and secondary parametric resonance. The maps of Fig. 10(a)

indicate that the duration of the pulse significantly affects secondary parametric resonance conditions,

which become more important for shorter pulse durations (s ¼ 0:125T in Fig. 10(a)). Similar conclusions
can be drawn from the maps corresponding to higher values of n which are shown in Figs. 11(a), 12(a), and

13(a). Particularly for n ¼ 2 and n ¼ 3, the considered variation for the axial force induces instability in a

wide range of conditions. The importance of secondary parametric resonance conditions is evident and

again more important for small pulse duration.

The effect of the stiffening rings is shown in Figs. 10(b), 11(b), 12(b), and 13(b). The rings are again

effective in increasing the shell�s stability for this second considered variation for the axial force. The

effectiveness for n ¼ 0 modes is limited, as the addition of the rings slightly reduces the extension of the two

parametric resonance regions, more remarkably in the case of s ¼ 0:5T . The influence of the rings is more



Fig. 12. Unstable regions for periodic axial pulse: plain (a) and stiffened (b) shells (n ¼ 2).
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dramatic for higher order lobar modes, where significant reductions of the unstable regions can be con-

sistently observed.
5. Conclusions

The dynamic buckling stability of supercavitating underwater vehicle is here analyzed and controlled

using periodically placed circumferential stiffening rings. Supercavitating underwater vehicles undergo very

high longitudinal forces as a result of their interaction with the water. The magnitude of this force is ap-

proximately proportional to the square of the velocity of forward motion of the vehicle and tends to be very

high. In addition, the unsteady behavior of the cavity and of the interactions of the vehicle with the cavity/



Fig. 13. Unstable regions for periodic axial pulse: plain (a) and stiffened (b) shells (n ¼ 3).
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water interface requires the stability of supercavitating vehicles to be considered as a case of dynamic

buckling. The supercavitating vehicles are modeled as thin axisymmetric shells. A FE model is developed to

predict the shells behavior and to perform the buckling analysis. The longitudinal forces are considered to
vary periodically in time, thus potentially causing parametric resonance conditions. The longitudinal forces

are described as purely harmonic functions as well as step-wise periodic functions. For the case of harmonic

forces, the buckling analysis is performed using Bolotin�s method, which provides an approximated ex-

pression for the stability boundaries related to the principal parametric resonance. The particular nature of

the step-wise time variation considered as a second case, allows the evaluation of the system�s transition

matrix without the need for numerical integration. This makes Floquet theory applicable in this case for a

complete evaluation of the extension of the stability regions. For both considered force variations, the

extension of the stability regions is evaluated for varying velocity of the vehicle, frequency and amplitude of
the force oscillations, and pulse duration. The comparison of the buckling characteristics of plain and

stiffened shells of various configurations indicates how the stiffening rings substantially extend the range of
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stable operating conditions. The presented results suggest that optimal stiffened designs may be identified to

achieve stability at given operating speeds and under specified oscillations of the longitudinal force. Future

work will hence attempt to implement an optimization process having the maximization of the extension of

the stable regions as one of the objective functions. The effect of non-uniformly distributed axial forces
varying periodically or non-periodically in time will be also evaluated.
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